هیدرولیک و اطلاعات

دانلود پایان نامه

برای زبری‌ها نسبی(021/0 تا 031/0)03/0:
(2-26)
برای زبری‌ها نسبی(051/0 تا 115/0)08/0:
(2-27)
برای زبری‌ها نسبی(165/0 تا 425/0)29/0:
(2-28)
همچنین معادله ضریب نیروی برشی بر روی بستر صاف را به صورت معادله زیر ارائه نمود:
(2-29)
هاگز و فلک (1983) نیز در خصوص پرش هیدرولیکی تشکیل شده بر روی بسترهای زبر مطالعاتی انجام دادند. آنها نشان دادند که ناهمواری‌های مرزی بطور حتمی عمق ثانویه و پرش هیدرولیکی را کاهش می‌دهند و میزان این کاهش به عدد فرود اولیه و میزان ناهمواری نسبی مربوط می‌باشد. آن‌ها همچنین 200 پرش هیدرولیکی را بر روی شیب صفردر اعداد فرود بین 3 تا 10 بر روی 5 بستر ناهموار شامل دو زبری نواری و 3 زبری با ذرات ماسه و شن با ارتفاع 2/3 میلیمتر تا 3/11 میلیمتر و ناهمواری نسبی 0 تا 9/0 در آزمایشگاه مورد بررسی قرار دادند که شامل متغیرهای قابل دسترس توسط طراحان می‌باشد. این رابطه به شرح زیر است:
(2-30)
(2-31)
(2-32)
که fضریب اصطکاک ترکیبی محیط خیس شده است که در رابطه زیر بدست می‌آید:
(2-33)
که w: عرض کانال، : ضریب دیواره های جانبی و : ضریب اصطکاک بستر و L: طولی است که برای پراکنده کردن جریانات متلاطم توسط پرش هیدرولیکی مورد نیاز است و نباید آن را با طول پرش هیدرولیکی اشتباه کرد.
(2-34)
(2-35)
(2-36)
نیز بین 04/1 تا 1/1 بر روی بستر زبر تغییر می کند.در این مطالعه کاهش عمق متناظر پرش، تقریباً در اعداد فرود بیشتر از 5/3 مشاهده گردیده است.
هاگر و برتز(1986) با استفاده از اصل مقدار حرکت، روابطی برای پرش هیدرولیکی در کانال‌های افقی مستطیلی با پله‌های مثبت یا منفی به دست آورده، نشان دادند که اطلاعات و نتایج آزمایشگاهی نیز با معادلات مربوطه تطابق خوبی دارند و لذا برای هر مقدارFr1، y1 و S(ارتفاع پله) می توان عمق ثانویه y2 را به دست آورد.
محمد‌علی (1991) با انجام یک سری آزمایشات بر روی بستر زبر شده با استفاده از المان مکعبی نشان داد که طول نسبی پرش هیدرولیکی بر روی بستر‌های زبر نسبت به حالت کلاسیک از 4/37 تا 4/67 درصد تغییر می کند.
هاگر(1992) معادله حاکم بر روابط فوق را بصورت زیر نمایش داد: